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Table IV. Isolated Gesture Recognition – Posture Occurrence (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%
(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)

Gesture Joint Positions Dance Angles Joint Positions Dance Angles
L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

G1 100 100 100 100 100 100 100 100 100 100 100 100
G2 97 93 97 100 100 100 98 95 98 100 100 100
G3 100 100 100 100 100 100 100 100 100 100 100 100
G4 100 100 100 79 64 79 100 100 100 91 90 91
G5 98 95 98 90 80 90 100 99 100 91 91 91
G6 98 92 98 100 99 100 99 96 99 100 100 100
Overall 98.8 96.7 98.8 94.8 90.5 94.8 99.5 98.3 99.5 97.0 96.8 97.0

Table V. Isolated Gesture Recognition – Posture Sparse Codes (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%
(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)

Gesture Joint Positions Dance Angles Joint Positions Dance Angles
L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

G1 100 100 100 100 100 100 100 100 100 100 100 100
G2 100 100 100 100 100 100 100 100 100 99 99 99
G3 92.5 92.5 92.5 100 100 100 100 100 100 100 100 100
G4 92 92 92.5 96 90 96 100 100 100 100 98 100
G5 100 100 100 80 90 81 100 100 100 81 92 82
G6 100 100 100 100 100 100 100 100 100 100 100 100
Overall 97.4 97.4 97.4 96.0 96.7 96.2 100 100 100 96.7 98.2 96.8

isolated gesture database (Teacher). In this section, two test cases were considered: 717
the first using a (20%:80%) ratio of training samples to test samples and the second 718
using a (40%:60%) ratio. In other words, from the full set of Teacher gestures, 20% 719
(e.g., two of 10 instances from each gesture) were randomly selected and used to form 720
gesture templates, while the remaining 80% were classified against those templates. 721
This process was repeated for 10 trials, and the accuracy of classification was recorded 722
per class (for each set of input features and similarity metrics). Here, the template 723
matching was performed by three similarity metrics: L1 norm, L2 norm, and histogram 724
intersection. The L1 norm is defined as 725

|hs, hc|1 =
D∑

i=1

|hs,i − hc,i|. (14)

The L2 norm is defined as 726

|hs, hc|2 =
√√√√(

D∑
i=1

∣∣hs,i − hc,i
∣∣2). (15)

Histogram intersection is defined by Equation (11). The second experiment followed 727
the same process but instead using 40% of samples to generate gesture templates, with 728
60% used for classification. The results are displayed in Tables IV to VII. 729

From this data, for G1, G2, G3, and G6 (and with the exception of highlighted angles), 730
the dance feature angle appears to be more robust over several trials (20% and 40% 731
training set, respectively). It would appear that there are some discrepancies in the 732
angle calculations that are causing noise for gestures G4 and G5. For gestures G1 to 733
G3 and G6, the dance angles perform better overall than the straight joint position 734
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Table VI. Isolated Gesture Recognition – Posture Transitions (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%
(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)

Gesture Joint Positions Dance Angles Joint Positions Dance Angles
L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

G1 100 100 100 100 100 100 100 100 100 100 100 100
G2 100 100 100 100 100 100 97 94 97 100 99 100
G3 92.5 92.5 92.5 100 100 100 100 100 100 100 100 100
G4 92 92 92.5 79 64 79 100 100 100 91 90 91
G5 100 100 100 88 80 88 100 97 100 91 89 91
G6 100 100 100 100 99 100 100 97 100 100 100 100
Overall 97.4 97.4 97.4 94.5 90.5 94.5 99.5 98 99.5 97.0 96.3 97.0

Table VII. Isolated Gesture Recognition – Posture Transition Sparse Codes (SSOM: C2a; Teacher)

Average Recognition Accuracy% Average Recognition Accuracy%
(10 Trials) (20% Train, 80% Test) (10 Trials) (40% Train, 60% Test)

Gesture Joint Positions Dance Angles Joint Positions Dance Angles
L1 L2 HI L1 L2 HI L1 L2 HI L1 L2 HI

G1 100 100 100 100 100 100 100 100 100 100 100 100
G2 100 100 100 100 100 100 100 100 100 100 100 100
G3 92.5 92.5 92.5 100 100 100 100 100 100 100 100 100
G4 92 92 92.5 96 92 96 100 100 100 100 100 100
G5 100 100 100 87 89 87 100 100 100 89 90 89
G6 100 100 100 100 100 100 100 100 100 100 100 100
Overall 97.4 97.4 97.4 97.2 96.8 97.2 100 100 100 98.2 98.3 98.2

feature. Having said this, recognition performance is quite high for all scenarios, in735
part due to the simplicity of the gesture movements recorded.736

If considering the noisy data in these “problematic” gestures, it seems evident that737
the sparse code histograms (of either posture occurrence or posture transition) appear738
to improve recognition performance. In addition, sparse codes of posture transitions739
appear to give the best performance overall. It should be noted that the approaches740
based on posture transitions (or their sparse codes) consider temporal information from741
the gesture, so it would seem justified that performance is improved.742

The performance of joint positions alone cannot be discounted, although this may743
be due to the simple motions conveyed by the gesture set. It would seem plausible744
that a positional feature might be suitable in a multiresolution framework, for either745
filtering out coarse-grained body postures or filtering/constraining recognition to an746
appropriate subset of gestures, when a large-scale set of complex gestures is to be747
recognized. For fine-scale recognition or recognition of more complex movements, the748
dance angle feature proposed seems appropriate.749

6.4. Generalization Performance in Gesture Recognition750

In this experiment, we attempt to assess whether the methods we have developed751
for the recognition of our basic set of gestures in performance can be generalized752
to an expanded set of gestures. Based on the six postures discussed previously (see753
Figure 8), we define a new set of gestures, Set I, which contains a total of N gestures.754

Here, N = ∑P
p=1 (p − 1), where P = 6 is the total number of postures. Table VIII shows755

a matrix describing the definition of all gestures. In the table, giving the six postures756
P1 to P6, the gesture Gij is formed as an isolated gesture moving from the ith positionQ2757
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Table VIII. Definition of the 30 Gestures

P1 P2 P3 P4 P5 P6

P1 - G12 G13 G14 G15 G16

P2 G21 - G23 G24 G25 G26

P3 G31 G32 - G34 G35 G36

P4 G41 G42 G43 - G45 G46

P5 G51 G52 G53 G54 - G56

P6 G61 G62 G63 G64 G65

Note: Pi is the ith posture. Gij is the gesture
performed from the ith posture to the jth pos-
ture. Gij is the reversal of the gesture Gji.

Table IX. Isolated Gesture Database

# Instance for Each Gesture
Gesture Teacher Student1 Student2 Total Instances
Gesture Set I: G12, G13, G14, G15, G16,
G23, G24, G25, G26, G34, G35, G36, G45,
G46, G56

10 10 10 450

Gesture Set II: G21, G31, G41, G51, G61,
G32, G42, G52, G62, G43, G53, G63, G54,
G64, G65

10 10 10 450

to the jth position (i.e., moving from posture Pi to posture Pj). This definition forms 758
the gesture set, Set I, in the upper triangle of the matrix, containing G12, . . . ,G16; G23, 759
. . . ,G26; . . . ,G56, which has a total of N = 15 gestures. By contrast, the gesture Gji is 760
the reversal of the gesture Gij. The reversal gestures form the gesture Set II, which 761
contains gestures in the lower triangle of the matrix. The total number of gestures is 762
obtained from the union of Set I and Set II, which contains 2 × N = 30 gestures. 763

We first used the nonreversal gestures in Set I. Three datasets were constructed: 764
Teacher dataset, Student1 dataset, and Student2 dataset. The Teacher dataset and 765
Student1 dataset were used for both construction and testing of gesture recognition 766
performance, whereas the Student2 dataset was used for testing only. Thus, the Stu- 767
dent2 dataset is considered as unseen data to the trained system. The database includes 768
15 isolated gestures (i.e., each gesture is recorded independently of any sequence of 769
other movement/gesture). The structure of this dataset is summarized in Table IX. In 770
order to assess the performance of the SSOM posture space representation, gesture 771
template definitions, and matching criteria, the system was trained by a (50%:100%) 772
ratio of training samples. From the full set of Teacher gestures and Student1 ges- 773
tures, 50% (e.g., 10 of 20 instances from each gesture) were randomly selected and 774
used to form gesture templates, while all 100% were classified against these templates. 775
This system employed the SSOM configuration C2a and trained according to the joint 776
position feature. 777

Table X shows the performance of the proposed system for recognition of ballet 778
dance performed by three people, Teacher, Student1, and Student2. The system can 779
attain more than a 98% recognition rate averaged over 15 classes for recognition of 780
the Teacher dataset by using the PT template and histogram intersection (HI) for 781
similarity matching. The PO template also gave similar recognition performance to 782
the PT method. Moreover, the system can recognize dance from the Student1 dataset 783
at 100% accuracy by using the PO template and L2 norm for similarity matching. It 784
can also be observed that by using other students’ data for testing (e.g., the Student2 785
dataset), the proposed system can still achieve the average recognition accuracy as high 786

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.



TIST0602-23 ACM-TRANSACTION March 9, 2015 13:26

23:26 M. Kyan et al.

Table X. Gesture Recognition Results Averaged over 15 Gestures Defined in the Upper Triangle in Table VIII.Q3
The system was trained by 50% of datasets from Teacher and Student1 and tested for all 100%.

Testing Average Recognition Average Recognition
Data Descriptor Accuracy (%) Testing Data Descriptor Accuracy (%)

L1 L2 HI L1 L2 HI
Teacher PO 96.7 98.0 96.7 Student2

(unseen data)
PO 90.7 92.0 90.7

PSC 79.3 84.0 79.3 PSC 69.3 72.0 69.3
PT 98.7 97.3 98.7 PT 91.3 88.7 91.3
PTSC 87.3 92.7 87.3 PTSC 67.3 73.3 67.3

Student1 PO 94.0 100 94.0
PSC 77.3 85.3 77.3
PT 94.7 99.3 94.7
PTSC 86.0 92.0 86.0

Table XI. Gesture Recognition Results Averaged over 30 Gestures Defined in Table VIII. These include theQ4
reversal of gestures. The system was trained by 50% of datasets and tested for all 100%.

Average Recognition Average Recognition
Testing Data Descriptor Accuracy (%) Testing Data Descriptor Accuracy (%)

L1 L2 HI L1 L2 HI
Teacher PO 77.7 74.3 77.7 Student 1 PO 66.7 66.3 66.7

PSC 58.0 61.3 57.7 PSC 54.7 56.0 54.7
PT 96.0 79.3 96.0 PT 88.3 73.3 88.3
PTSC 83.0 84.3 83.3 PTSC 79.7 83.0 76.7

as 92%. This shows the generalization capability of the trained system for recognition787
of the unseen data.788

Next, we used two sets of gestures, Set I and Set II, described in Table IX for the789
experiment. This database contains 30 gestures, where each gesture Gij has its corre-790
sponding reversal Gji. Gesture G12 is described by the movement from the first position791
to the second position, whereas G21 represents the movement from the second position792
to the first position. In this case, the POs of G12 and G21 may be similar, and thus, they793
may be incapable of discriminating the two gestures for recognition. The PTs, on the794
other hand, may preserve the direction of the movement within the gestures, and they795
may be employed for discrimination of the reversals. This is confirmed by the results796
shown in Table XI. The proposed system was trained by a (50%:100%) ratio of training797
samples. Both Teacher and Student1 instances were randomly selected for the train-798
ing set. It can be observed from the result that the gesture template obtained by PT799
outperforms other indexing methods discussed. The recognition rate averaged over 30800
gesture classes can be attached at 96%. However, the system has a lower performance801
at about 88% for recognition of the Student dataset. This may be because the dance802
sequences performed by the student may be inconsistent as compared to the teacher.803

6.5. Online Recognition of Continuous Gestures804

6.4.1. Progressive Versus Metronome Posture Sampling. In order to assess the utility of the805
online approach to recognizing and segmenting continuous gestures, the use of his-806
togram intersection directly on a sample of postures (at time t) is initially explored.807
In this test, we consider two approaches to sampling postures online. In the first,808
the input sequence is continuously aggregated and converted to a progressive his-809
togram that is matched against the templates for each gesture using the HI metric.810
Figure 11(a) shows the trace of HI versus sample number for the teacher (performing811
D1 from Table III). Figure 11(b) shows the same dance D1 for the student. In both cases,812
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Fig. 11. Continuous dance movement recognition using histogram intersection directly, computed from
(1) progressive histogram (top): (a) Teacher, (b) Student; and (2) metronomic histogram (bottom): (c) Teacher,
(d) Student.

even though the set of postures is accumulated from the beginning (and no postures 813
are dropped), there are clear increases in the HI similarity: for example, at frame 50, 814
there is a peak for G6, and at frame 140, G1 peaks, followed by G2, G3, G4, and G5. 815
This is true for both Teacher and Student datasets and corresponds to the expected 816
sequence of gestures (see Table III). The problem is that the degree of similarity is not 817
high, and it becomes difficult to choose a threshold that can work across gestures. In 818
the second test, we consider the fact that the gestures are performed with the guidance 819
of a metronome, which ticks every 50 frames. The metronome is a simplified surrogate 820
for the beat or rhythm that may be associated with music accompanying the dance 821
sequence. Given that the dancer attempts to synchronize with this rhythm, we aggre- 822
gate postures over the period between metronomic beats. This metronomic histogram 823
results in the set of HI traces in Figures 11(c) and 11(d), each relating to the teacher 824
and student’s performance of the dance D1. The result is a somewhat similar pattern 825

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 2, Article 23, Publication date: March 2015.

matthewkyan
Sticky Note
relabel as G_12, G_23, etc?

matthewkyan
Highlight

matthewkyan
Highlight

matthewkyan
Highlight

matthewkyan
Highlight

matthewkyan
Highlight

matthewkyan
Highlight



TIST0602-23 ACM-TRANSACTION March 9, 2015 13:26

23:28 M. Kyan et al.

Fig. 12. Online recognition of Teacher (dance D1 gestures). Left top: posterior traces based on posture
occurrence. Bottom left: class prediction trace for posture occurrence. Right top: posterior traces based on
posture transitions. Bottom right: class prediction trace for posture transitions.

of peaks reflecting the presence of each gesture, with some boosted similarity; however,826
there is still no clear way to set a detection threshold or condition that can work for827
all gestures. To this end, we employ the Bayesian framework outlined in Algorithm 2,828
which will be evaluated in the next section.829

6.4.2. Bayesian Recognition Using Histogram Intersection. In the final set of recognition ex-830
periments, we evaluate the performance of the proposed Bayesian framework outlined831
in Section 4.3. In the first test case, the dance D1 is considered, and the online recog-832
nition is applied for both the teacher and student, using the posture occurrence and833
posture transition descriptors, respectively. The posterior probability is captured as a834
trace (for each gesture class) over the duration of the dance sequence. Results for the835
teacher sequence are shown in Figure 12, while results for the student are shown in836
Figure 13.837

The results for the teacher show that, for both descriptors, the posterior appears to838
be quite robust in estimating and switching between gestures. The maximum posterior839
is selected as the prediction of the gesture class at each time sample in the sequence840
(shown in Figure 12, bottom left and right). The prediction has been able to extract and841
segment, in an online manner, the duration of each gesture in the sequence: G6, G1, G2,842
G3, G4, G5, with some minor noise at the beginning and end of the dance. According to843
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Fig. 13. Online recognition of Student (dance D1 gestures). Left top: posterior traces based on posture
occurrence. Bottom left: class prediction trace for posture occurrence. Right top: posterior traces based on
posture transitions. Bottom right: class prediction trace for posture transitions.

this result, the system can accurately recognize the teacher’s dance gestures from the 844
continuous sequence D1 with 98.6% accuracy (calculated as a percentage of incorrectly 845
detected posture samples over frames 50 to 260, Figure 12). It is apparent that there 846
should be a class to capture derelict cases of postures other than the learned set; 847
otherwise, the posterior will attempt to lock onto the best representation for the input 848
(e.g., G5 at the beginning of the sequence). 849

The result for the student’s performance is also quite satisfactory, as the people 850
performing the movements are different from the teacher and, more so, their ability to 851
repeat the correct movement is somewhat limited. Regardless, with some minor noise, 852
the selection of gesture class appears to follow the actual sequence (i.e., recognition 853
accuracy of 84.3% to 89%, also calculated as a percentage of incorrectly detected posture 854
samples over frames 50 to 260, Figure 13). When confusion does occur, nearby postures 855
are selected for a relatively brief period before switching back to the correct gesture. 856

One can see that it should also be possible to augment this approach by further 857
employing the metronome idea; one might sample the posterior only at set beats in the 858
rhythm of the dance. As can be seen from the gesture prediction traces in Figure 13, 859
sampling the posteriors at metronomic locations (every 50 frames in this case) would 860
again result in a quite smooth and robust extraction of the correct gesture sequence. It 861
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Fig. 14. Illustration of side-by-side feedback.

Fig. 15. Illustration of overlay feedback.

is also observed that, with respect to gesture selection, the posture transition provides862
an improved result over the posture occurrence.863

6.6. Results on Student Assessment864

Figures 14 to 17 show some pictures of the proposed system for dance training with the865
student. These include the side-by-side feedback (Figure 14), overlay (Figure 15), and866
scoring feedback (Figures 16 and 17). In each case, the student wears stereo glasses867
with optical markers to observe her performance, which allows visualization in 3D.868

From the experimental data explained in Section 6.1, we obtained the best teacher869
dance data and used them as templates for each gesture. The experiments here were870
aimed at comparing the student’s dance performance to the teacher templates after871
the recognition stage. Figure 18(a) shows the plot of the summation scores computed872
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Fig. 16. Illustration of the feedback with overall score.

Fig. 17. Illustration of the feedback with score curve.

by Equation (12), describing how the student performs compared to the teacher for 873
each gesture. It can be observed from the figure that students perform well for the 874
sixth repetition at a score of about 95, and the lowest score was observed for student 875
performance on the first time. Figure 17(b) shows the average score for all gestures 876
at six time repetitions of student dances. It is observed that as the student repeated 877
her dance and learned feedback from the system, her dance gestures were close to the 878
teacher. 879

At this point, the student performance shows only modest improvement. We note, 880
however, that our test routines involve very simple gestures—indeed, the most sim- 881
ple that we use. We made this decision on the basis that we confronted significant 882
technological and aesthetic challenges. The technological challenges involved develop- 883
ing for Kinect, Unity, and Ryerson’s Virtual Reality facility. The aesthetic challenges, 884
which are of greater magnitude, involve identifying salient features of these dance ges- 885
tures to allow us to focus on those divergences between the teacher’s and the student’s 886
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Fig. 18. Illustration of the performance of the student’s performance compared to the teacher in terms of
average score: (a) shows the score when the student performs each gesture six times, and (b) shows the
average of results in (a).

performance that are most relevant. Anybody, even people completely lacking in dance887
training, would be able to reproduce the teacher’s performance with a high degree of888
accuracy from the beginning. In this context, the amount of improvement we would889
expect is low. The fact that we have observed a detectable, albeit slight, improvement890
is exactly what we would expect. We therefore take this as evidence that the system is891
responding well.892

We look forward to using more difficult choreographic routines as we develop the893
system further. We expect, then, that the initial divergence between the student’s and894
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the teacher’s performance will be greater and that the amount of convergence detected 895
in repeated attempts will increase. 896

7. SYSTEM LIMITATIONS AND FUTURE WORK 897

With regard to system architecture, there are several elements that need improvement 898
(work we intend to undertake). The first concerns noise introduced by the Kinect sensor. 899
In our experiment, we tested the system for the recognition of gestures composed of 900
the six positions of basic ballet dance (Figure 8). When we enlarge the set of postures 901
(forms cut in space) beyond that rudimentary set, it becomes important to capture 902
the whole skeleton correctly. In the current version of Kinect, it is required that the 903
dancer face the Kinect; thus, postures that involve bending backward or the occlusion 904
of particular joints are not correctly captured by the system. As a result, the current 905
system has difficulty capturing some balletic movements such as Pirouette en dehors, 906
which is a turning movement in which the dancer spins on the spot while standing 907
on one leg with the heel raised. In our experiment, we also observed that Kinect 908
sometimes detected the leg joints inaccurately. It is difficult to capture some dance 909
movements that concern the forms the legs cut in space, movements such as Grand plié, 910
Battement devant, Temps levé, Glissade dessus, and Grand jeté elancé en avants. The 911
noise from Kinect affects our recognition and assessment system in two ways. First, as 912
concerns the recognition stage, the resulting SSOM trajectories of dances in the same 913
gesture classes (as shown in Figures 9 and 10) will be slightly different from other 914
samples in the same classes. As a result, the templates of the noisy trajectories result 915
in lower accuracy of performance/gesture recognition. Second, for the visualization and 916
assessment of the dance performance, the similarity score between the skeleton data 917
of the teacher and student may be degraded by the high level of noise from the sensor. 918

In addition to sensor limitations, it is important to consider the fact that the dataset 919
used in this work is limited in its diversity. In dealing with larger-scale data, it will be 920
important to consider the possibility of incorporating a number of different teachers 921
into the training set. In this sense, the approach taken for training gesture templates 922
using the SSOM will be unchanged, and it is expected that posture transitions and 923
gesture segments that commonly occur will be captured and emphasized—that is, 924
variability between teachers will be naturally de-emphasized by the system. Testing 925
on a larger and more diverse set of students (from a broad range of body types and 926
skill levels) will need to be conducted. In addition, training the SSOM on a full range 927
of detectable ballet postures is also necessary to enable a more complete spectrum of 928
gesture sequences. This also warrants in-depth analysis of SSOM sizing in relation to 929
the number of different postures expected. 930

Another element that needs further work is the gesture indexing method. In the 931
current implementation, the bag-of-words approach is used to measure the statistics of 932
the coding labels of the SSOM codebook. We have studied only the posture occurrence 933
and posture transition as well as their associations. We have not fully exploited the 934
trajectory of the gestures encoded on the SSOM. It is evident that the transitions 935
from posture to posture (or from one form in space to next) preserve more temporal 936
information about the meter of dance sequence than the postures (forms in space) do 937
themselves, and, consequently, including reversal gestures in the dataset results in 938
higher accuracy (this is discussed in Section 6.4). In order to fully exploit the gesture 939
trajectory on the SSOM, a suitable method for statistical analysis of sequential data 940
such as a hidden Markov model (HMM) is necessary. This may increase the recognition 941
accuracy. 942

The final element that needs improvement is the 3D visualization in the CAVE. 943
In the current implementation, the visual feedback is provided by the overlay and 944
the side-by-side feedback. Even though we provided a side-by-side feedback mode, the 945
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feedback mainly made use of the front projection wall and not much use of the two946
side walls. This is because the user needs to stand at a distance from the Kinect in947
order for his or her whole body to be detected. In this case, the two side walls are948
not fully utilized. We suggest in a future work to make use of the two side walls. For949
instance, during the visualization of the dance performance, the user can be asked to950
step forward inside the CAVE and then the teacher’s dance motion can be rendered in951
the front projection as well as in each of the side projections, so that the student can952
look at the front projection for the front view and the side projections for the left- and953
right-side views. Then, during the evaluation of the student’s performance, he ot she954
can be asked to step back for the Kinect to work properly.955

In addition to working on these features, we will extend the complexity and scope of956
ballet movements and gestures and provide functionality for the online annotation of a957
user’s dance movements as he or she works to interactively construct and review new958
choreographies.959

8. CONCLUSIONS960

A novel framework and implementation is presented for the real-time capture, as-961
sessment, and visualization of ballet dance movements performed by a student in an962
instructional, virtual reality (VR) setting. Using both joint positional features and a963
proposed dance feature (based on angles of joints relative to the dancer’s upper and964
lower torso), a spherical self-organizing map is trained to quantize over the space of965
postures exhibited in typical ballet formations. Projections of posture sequences onto966
this space are used to form gesture trajectories, used to template a library of predeter-967
mined dance movements to be used as an instructional set. Four different histogram968
models are considered in describing a gesture trajectory specific to a given gesture969
class (posture occurrence, posture transitions, and sparse codes relating to posture970
occurrence and transition, respectively).971

Recognition performance was evaluated on a database of isolated gesture recordings972
made by both the teacher and student using three different matching techniques (L1973
norm, L2 norm, and histogram intersection). Overall, both features were very effective974
for recognition, with average recognition rates in the range of 90.5% to 99.5%, with the975
dance feature showing improved robustness (discounting some errors introduced by976
derelict/noisy recordings in gestures 4 and 5). The incorporation of posture transitions977
as a descriptor shows a marked boost in recognition performance (across all matching978
metrics used) and can be attributed to its detection of temporal ordering of postures.979
The bag-of-segments approach to all four descriptors offers flexibility and generalization980
across instances of movement recorded from a candidate user: recognition for which,981
due to the natural variation of the human when repeating movements and the sensor982
noise introduced by the Kinect, can be a challenging task.983

The recognition evaluation was extended to the online case, where a dance composed984
of continuous gestures is segmented online using a Bayesian formulation of the rec-985
ognizer (using the histogram intersection metric for computing likelihoods over aggre-986
gated postural sequences). This formulation shows much promise (in particular when987
applied to templates employing descriptors based on posture transition), effectively988
delineating a student’s dance movement into constituent gestural units.989

A visualization subsystem compares the detected gestural units against a library of990
teacher-based gestures and presents immersive visual feedback to the student, thereby991
quantifying his or her performance. The feedback offers two visual modes for compar-992
ing the student’s performance of movements with the teacher’s and an overall score993
component to quantify the training session. The virtual environment afforded by the994
CAVE infrastructure enables the student to experience his or her performance and995
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evaluate it in the same spatial context in which it was performed. This provides unique 996
insight and suggestion for how to adjust and improve enacted dance movements during 997
an interactive training session. 998
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grand plié. Medical Problems of Performing Artists 15, 4 (2000), 140–147. 1014

D. A. Becker and A. Pentland. 1996. Using a virtual environment to teach cancer patients T’ai Chi, relax- 1015
ation, and self-imagery. In Proceedings of the International Conference on Automatic Face and Gesture 1016
Recognition. 1017

M. Bertucco and P. Cesari. 2010. Does movement planning follow Fitts’ law? Scaling anticipatory postural 1018
adjustments with movement speed and accuracy. Neuroscience 171, 1 (2010), 205–213. 1019

A. F. Bobick and J. W. Davis. 2001. The recognition of human movement using temporal templates. IEEE 1020
Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001), 257–267. 1021

D. Brennan and M. M. Van Hulle. 2007. Comparison of flat SOM with spherical SOM: A case study. In 1022
The Self-Organizing Maps and the Development – From Medicine and Biology to the Sociological Field. 1023
31–41. Q51024

S. Bronner and S. Ojofeitimi. 2006. Gender and limb differences in healthy elite dancers: Passé kinematics. 1025
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