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T
he use of technology in dance

training has evolved rapidly over

the past decade. For many years,

the principal method of teaching

dance was the use of demonstration-perform-

ance exercises. The instructor would give a

demonstration, and the student would attempt

to imitate the dance while the instructor closely

scrutinized the student’s movements and then

provided feedback. Almost three decades ago,

video became widely used to pass choreography

down to new generations of dancers. More

recently, video databases have begun playing a

more active role in dance education—one

example is the Dance in Video world dance

collection (see http://alexanderstreet.com/node/

106). Video analysis software has also been intro-

duced that lets researchers retrieve information

about dancers’ location in a 3D space. Although

none of these technologies have replaced the

teacher-demonstrator paradigm, they have been

an effective means of information storage and

retrieval.

In the last decade, researchers have started

exploring other ways to utilize digital media in

dance training. For example, Second Life ava-

tars have been used as assistants or supplements

to demonstrate basic choreographic sequen-

ces.1 Computer-based systems also offer a more

quantitativemethod of dance training than tra-

ditional dance teaching, which relies on an

instructor’s subjective impressions. A number

of research works have described quantitative

methods for objectively and systematically ana-

lyzing and assessing ballet techniques. These

methods use video or 3D motion-tracking sys-

tems to capture kinematic and kinetic data, and

assessment methods have been developed to

evaluate the biomechanical properties of the

acquired humanmovement data. The measure-

ments generated by such systems can be used to

evaluate the technical development of individ-

ual dancers.

The value of these measurements depends

entirely on the representational validity of the

characteristics selected for the feature set—that

is, how well the set of features selected reflects

the dance gestures’ most aesthetically relevant

dynamic properties. The value also depends on

the accuracy of feature extraction. Such meas-

urements facilitate the presentation of non-

quantitative feedback, which might take the

form of a visual comparison of virtual charac-

ters2 or the synthesis of dance partners “on

the fly.”3

This article extends efforts to enhance the

traditional teacher-centered, demonstrate-

imitate mode of instruction using a ballet train-

ing application. Unlike previous works, we inte-

grate automated training exercises for repetitive

tasks with highly accurate analytical tools, in-

cluding automated gesture recognition and

assessment. The goal is to provide adequate

feedback to facilitate self-driven learning in an

immersive environment.3 Specifically, we de-

veloped a machine intelligence method that

provides student dancers with an automated

assessment of their performances, relative to a

virtual instructor, using a 3D Cave Automatic
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Virtual Environment (CAVE) to provide the

dancers with enhanced feedback and spatial

awareness of their movements relative to the

virtual instructor.

System Architecture and Contributions
The architecture of our system includes four

components: a Kinect sensor, CAVE, gesture

recognition, and visual feedback (Figure 1). To

enable dance gesture recognition, we offer a

new method for analyzing movement trajecto-

ries—the spherical self-organizing map (SSOM).

Compared with previous works that implement

a self-organizing map (SOM) to quantify move-

ment features,4,5 we adopt the SSOM because

its spherical structure provides a more uniform

distribution of features during the quantization

process.6

Our first contribution to dance analysis is to

use a Markov empirical transition matrix to

analyze movement phrases (or SSOM transi-

tions between cadence points). We also present

a Bayesian method for resolving continuous

movement into segments in real time. To our

knowledge, no previous studies have incorpo-

rated thesemethods.7,8

Our second contribution is the development

of a complete virtual reality (VR) dance training

system that includes gesture recognition, dance

assessment, and visual feedback. To date, re-

search has generally focused on the visualiza-

tion phase. Much emphasis has been placed

on rote learning and repeatedly mimicking the

dance teacher, so much so that quantitative

measures and feedback are crude or non-

existent. However, repetition without feed-

back does not necessarily result in improved

performance.

Some recent papers have proposed an alter-

native to this rote-learning paradigm, with

student assessment conducted rapidly and fed

back to the student using a standard automat-

ed protocol.2,9,10 Students are apprised of the

accuracy of their performance, and the specific

areas performed inaccurately are identified. The

proposed system accommodates all the require-

ments that arise in connection with standard

methods of teaching elementary ballet.

Background and RelatedWork
Here, we outline the basics of our approach to

technologically enhanced teaching of elemen-

tary ballet. We also compare our approach to

related methods in gesture segmentation and

recognition.

Segmentation, Recognition, and Evaluation

To evaluate partial movements within a dance

sequence, gestures must first be detected and

isolated (segmented) for comparison. This in

turn lets us compare attempted dance move-

ments with the desired performance (from the

teacher). In domain-agnostic approaches (those

not specific to a particular type of movement

under consideration), unsupervised learning is

typically used to quantize the possible set of

postural states (cadence points) that would be

expected within a movement phrase. These

states would then be used to train classifiers to

detect their occurrence from a temporal stream

of gesture data.

Atsushi Shimada, Manabu Kawashima, and

Rin-ichiro Taniguchi have used sparse code

from SOMs to achieve segmentation and recog-

nition.4 The latest of these methods performs

early recognition of gestures from sparse codes

(postures encountered in the SOM for a given

movement phrase).4 In related state-of-the-art

methods, k-means clustering has been used to

derive bag-of-words (BoW) features that are fed

into a multiclass support vector machine

(SVM)7 to achieve gestural classification. Simi-

lar BoW decompositions have been combined

with stochastic linear formal grammars in

dynamic analysis of hand gestures for sign lan-

guage recognition.11 Sparse coding has also

been used to formulate histogram-based fea-

tures for multiview human activity recognition

from video across distributed camera net-

works.12 In these works, stochastic properties of

sparse features are often considered at the

expense of temporal structure.

Given an isolated movement phrase, the

quantitative measurement and evaluation of a

dancer’s performance level have been proposed

Kinect sensor

Projector
Projector

Projector

Gesture
recognition

Assessment &
Feedback

Figure 1. Virtual reality (VR) dance training

system architecture. Our system incorporates four

components: a Kinect sensor, CAVE, gesture

recognition, and visual feedback.
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in the literature.8,9,10 Motion features extracted

from video with rhythm elements of dance

actions9 have shown a strong correlation with

subjective evaluations of performance. Dynamic

time warping (DTW), with exponential time-

space scaling,8 has also been used to compare

recognized sequences against known templates.

Such methods face difficulties as a result of the

noise present in the signal (performance)

because there is such high variability when

different people attempt to replicate a given

motion.

Motor Learning and Feedback

Until recently, the most common means for

providing feedback about performance errors

involved a high degree of abstraction, present-

ing errors in the form of simple plots, gauges,

bars, lines, or numbers.13 Abstract visualiza-

tions might suffice for simple tasks because

they can represent a key feature of a movement

in an unambiguous way, but few art/dance stu-

dents relate to them immediately and emotion-

ally. Furthermore, it is difficult to convey to

dance students feedback about complex multi-

dimensional movement in 3D space in abstract

form. They are accustomed to learning through

an immediate sensory (kinesthetic) experience.

Augmented reality and VR simulators have

great potential for facilitating motor learning.

Feedback can be provided either during task

execution (concurrent feedback) or afterward

(terminal feedback). Although terminal feed-

back is effective for simple tasks, concurrent

feedback is more effective for complex tasks

with several degrees of freedom, which are

unlikely to bemastered in a single session.

Concurrent visual feedback presents side-by-

side or superimposed moving-image visualiza-

tions of the ideal movement14 and student’s

actual performance. The concurrency of the

feedback makes the relevant information more

immediately comprehensible. Concurrent vis-

ual feedback has been shown to be effective in

learning complex tasks in domains such as

sports and physical rehabilitation. (For exam-

ple, superimposing target angles over live-

action video has been successfully used to teach

pitching in baseball.) Similarly, concurrent dis-

play bars or force-time plots have been used to

indicate the deviation from the desired or ideal

(target) force for physical therapy patients prac-

ticingmobilization skills. In some cases, a head-

mounted display provides concurrent visual

feedback by superimposing a ghost target image

over what the client would ordinarily see. Stud-

ies found that this form of feedback was not

optimal however because it required frequent

head movements and restricted the user’s field

of view.

Prescriptive feedback is designed to help

more experienced learners correct deviations

between their performance and the target

movement. Such learners benefit from more

focused feedback, with the information sup-

plied when deviations reach a certain thresh-

old. With such feedback, a convention is

generally used to signify the degree of move-

ment errors (such as highlighting with different

colors superimposed on the limbs). Prescriptive

feedback allows learners to focus on the specific

aspects of their performance they want to cor-

rect. In this respect, prescriptive feedback based

on color bar animations has an advantage over

real videos (as well as side-by-side and superim-

posed visualizations) in that the animations are

simplified to the point of offering only the

most salient information.

Proposed System
Our training system is a unified framework that

uses the CAVE VR environment to offer stu-

dents visual feedback based on computer analy-

ses of their performances. The following is a

general overview of the framework:

� Students either watch a virtual teacher

demonstrate a dance sequence and attempt

to repeat the movement phrase, or they

perform the phrase without watching the

virtual teacher, and the system automati-

cally recognizes the movement phrase.

� When students have completed a perform-

ance, the gesture recognition engine is acti-

vated and the gesture data for the teacher’s

performance of the corresponding phrase

is called up and sent to the system’s feed-

back component.

� Students examine the feedback provided in

an immersive 3D environment.

The system also provides visual feedback “on

the fly,” as each student repeats a phrase. When

a sequence of gestures (already known to the

system) are performed, the system offers con-

current feedback (in side-by-side, superim-

posed, or descriptive form) to give the student a

real-time analysis of the performance.IE
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Unsupervised Gesture Parsing

We use the term “dance posture” to refer to a

particular configuration of body parts at a

moment in time; these postures can be

thought of as cadence points in movement

phrases. For the system, these postures are rep-

resented by a particular state of sensor values

at a moment in time. Gestures involve tempo-

ral data, presenting a context for the posture

that situates it in relation to the states that

have led to or follow the present time step.

Such a collection of states and their layout can

be indicative of a movement phrase for the

gesture recognition process.14 We employ an

unsupervised learning strategy to build an

informative posture space, and we character-

ize the temporal layout of postures in the

space for gesture recognition.

The gesture recognition process begins with

automatically parsing samples into a discrete

set of postures, drawing on a spectrum of

expected gestures. We adopt the SSOM demon-

strated by Archana P. Sangole and Alexandros

Leontitis for this process.6 Figure 2a shows the

SSOM structure, where the cadences or postures

are projected (quantized) onto the map. The six

basic positions of ballet (bas bras and the posi-

tions 1 through 5) are also shown in Figure 2a.

Given the six postures P1 � P6, a distinct gesture

Gij is formed as the dancer moves from posture

Pi to posture Pj.

When using a SSOM for parsing, the discrete

space is constructed so as to retain associations

that exist in the original input space—that is,

postures are positioned on the map near other

similar postures. As a consequence of this topol-

ogy-preservingmapping, a sequence of expected

“posture moments” or cadences within an

ongoing flow of movements could be expected

to trace a comparatively smooth trajectory on

the map. From this trajectory, we formulate

descriptors for each gesture.

The goal of unsupervised learning is essen-

tially to discover significant patterns in a given

set of data. The patterns are usually stored as a

set of clusters or groups of similar data.We form

clusters using the SSOM algorithm. The SSOM

lattice forms a closed-loop sphere (see Figure

2a). Thus, the neighborhood learning allows

learned postures to be allocated to, and distrib-

uted across, nodes on the lattice. Each training

pattern in the input space is connected to every

clustered unit by weight vector wi;j;k, a key

posture from the input space, where (i, j, k) are

the indices in 3D space. The total number of

nodes represents the number of postures the

map can learn. In this representation, nodes

are each equidistant from their immediate

neighbors, with which they form a hexagonal

neighborhood.

The SSOM learning phase is the procedure

for formulating weight vectors wi;j;k, using an

adaptive rule:

Dwði;j;kÞ
 ¼ a½xt �wði;j;kÞ
 �;

where wði;j;kÞ
 is the weight vector of the win-

ning node (i, j, k)*, a is the learning rate, and xt

is the current input at time t.Nodes compete to

see which is most representative of a given

input pattern presented to the network. A node

is identified as the winner if its weight vector

minimizes Euclidean distance over the set of all

nodes.

Trajectory Analysis

In addition to the six posturesmapped in Figure

2a, we map four instances of gesture G61 and

show the outcome in Figure 2b. This visualiza-

tion of the SSOM and the gesture trajectories on

it show that even differences in the duration of

the gestures do not appear to impact the consis-

tency with which the gestures map onto the

posture space. All gestures appear to trace char-

acteristic, repeatable paths on the unit sphere.

The consistency of the mapping indicates there

is a high degree of stability in the representa-

tion of the gestures, and this in turn suggests

there is sufficient overlap when extracting a

robust descriptor for each gesture category. In

the literature, where mapping is based on hier-

archical SOM5 or hierarchical k-means,7 the

sparse code and BoW descriptors are usually

explored. Specifically, the indices of winning

nodes are obtained, and the following descrip-

tors are constructed.

� Sparse code results in identifying a pattern

of activated winner nodes for a gesture ele-

ment. A sparse code vector only indicates

the existence of a set of postures, not their

frequency of occurrence.

� Posture occurrence is analogous to the popu-

lar BoW model. It is obtained by aggregat-

ing the occurrence of postures in a gesture

against the indexed set of nodes on the

map.

These descriptors do not consider the tem-

poral arrangement of postures or cadences in
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the map. They consider only the occurrence of

map units and the frequency of the individual

nodes for constructing descriptors. We observe

that these methods strive to maintain the mar-

ginal histogram of the SSOM indices (first-order

statistics). Because a gesture contains cadences

(postures) that strongly correlate with their

neighbors, the adoption of second-order statis-

tics, such as covariance and co-occurrence

matrices, are more appropriate for capturing

the dependency between pairs of cadences

from the SSOM trajectory. This lets us obtain a

descriptor using posture transition (PT).

We define a trajectory as a set of indices of

(winning) map units and model it using a Mar-

kov random process. To capture the dependen-

cies between SSOM nodes in the trajectory, the

horizontal Markov empirical transition matrix

of the dataset is calculated. The matrix’s ele-

ment is given by the probability

Z Z Z
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y y
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(a)

(b)

Figure 2. Gesture projections for ballet dance. (a) The six postures are mapped onto the posture space. Each gesture represents as a

trajectory on the spherical self-organizing map (SSOM). (b) Four instances of gesture G61. Smooth, local sets of postures show stable,

highly repeatable trajectories.
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Phðuiþ1 ¼ n j ui ¼ kÞ

¼
XW�1

i¼1
dðui ¼ k;uiþ1 ¼ nÞXW�1

i¼1
dðui ¼ kÞ

;

where d is the delta function; ui and uiþ1 are the

respective indices of a pair of neighboring

nodes; W is the size of the trajectory, k,n � {1,

…, M}; and M is the number of nodes in the

SSOM. The PT feature vector is formed by

arranging the elements of this matrix Ph, h ¼
1; …; M2 into a 1D template.

Isolated Gesture Recognition

We use the term balletic sequence, or simply

sequence, to refer to a linked sequence of bal-

letic gestures. Our system can segment sequen-

ces into isolated gestures. We use a probabilistic

framework for recognition and adopt a simple

Bayesian formula for progressively estimating

an updated posterior probability. The pseudo-

code for online gesture recognition is described

by Algorithm 1 (see Figure 3). Let Su be the

input posture sequence (capture by the sensor),

and let c ¼ 1, …, C be the indices of gesture

classes known by the system. Given Su, the sys-

tem estimates the posterior probability of the

gesture class c, which we denote as Pðc j SuÞ,
using the following rule: Posterior / Prior �
Likelihood.

Concurrent Feedback Design

For concurrent feedback, there are two training

phases.

First-phase training. Once the systemhas iden-

tified the best gesture class matches for a given

performance, the remaining problem is to deter-

mine how well the student has performed the

dance phrase compared with the teacher’s ver-

sion. We provide that comparison visually, using

concurrent feedback. Specifically, we provide

Input: gesture sequence
(t0)[ , ..., , ..., ]t T

uS x x x=
Output: Pt(c|hs) ; argmaxc,t{Pt(c |hs)}

Set t = t0 = 0;

Repeat

Let input gesture , ,t0
uS ⎡ ⎤= …⎣ ⎦x xt

Let hs be the PT template calculated from Su, and let hc be the PT

template of the cth gesture class
Calculate the likelihood, Pt(hs | c) = HI(hs, hc) = ∑imin[hs,i, hc,i]

Calculate the prior, (c) ( ) ( )

( ) ( )

0

1

1

1
,

| ,
,

| ,

t
t s s c

t s s cC

if t t
C

P
P c h HI h h

otherwise
P c h HI h h

−

−

⎧ =⎪⎪
= ⎨ ⋅⎪

⋅⎪⎩∑
Calculate the posterior probability Pt(c | hs) for all c,

( )
( ) ( )

( )

( ) ( )

( ) ( )

| |
|

|
t s t t s t

t s
t s t s t

P h c P c P h c P c
P c h

P h P h c P c
= =

∑
If max[Pt(c | hs)] > T1 (let T1 = threshold)

t0 = t

Reset prior ( ) 1
tP c C

=

Recalculate posterior Pt(c | hs)

t++

Until t > T (end of input sequence);

Figure 3. Algorithm 1 for online gesture recognition. Let Su be the input posture sequence (captured by the

sensor), and let c¼ 1; …; C be the indices of gesture classes known by the system. Given Su, the system

estimates the posterior probability of the gesture class c, which we denote as Pðc j SuÞ, using the following

rule: Posterior/ Prior� Likelihood.
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both side-by-side (Figure 4a) and superimposed

(Figure 4b) comparisons of the student and

teacher performances. While the student per-

forms the dance phrase, the system provides

options for the student and teacher models to

face one another, have their backs to the audi-

ence, or face the audience. (The latter is generally

themost useful.)

It is worth noting that CAVE displays differ

significantly from 2D videos. In the CAVE sys-

tem, students wear stereo glasses with optical

markers, which allows for 3D visualization.

Moreover, the location and orientation of the

user’s viewpoint (head pose) is tracked, and this

data is used to determine what is displayed on

the screens. This tracking offers greater freedom

of interaction and, accordingly, more effective

feedback.

Second-phase training. In the first phase of

dance training, students use a watch and imi-

tate strategy. In this second phase, side-by-side

and overlay (or superimposed) feedback pro-

vide the student with visual and kinetic cues.

We take special care in this phase to give to the

learner only the most salient information to

prevent cognitive overload. This consideration

led us to use prescriptive feedback. To visually

convey performancemeasures concurrently, we

use a skeleton silhouette. Specifically, we use an

incremental DTW (IDTW) algorithm15 to com-

pare the two dance performances. The IDTW

score for each joint is calculated separately and

mapped to a color table, which is used to render

the colored skeleton silhouette. The color of a

limb represents the IDTW distance (that limb’s

degree of conformance with the template).

We use the skeletal feature data from the

teacher example as a benchmark and compare

it in real time with the student’s performance.

Incorporating IDTW into the algorithm to cal-

culate a distance score between performances

makes it possible to compare an incomplete

sequence with a benchmark of a complete

sequence. Because the IDTW can evaluate a

partial performance (the student’s) against the

complete sequence (the teacher’s), it allows for

an incremental similarity score, substantially

improving computational efficiency over the

traditional DTWalgorithm. Pseudocode for the

IDTW algorithm is presented in Algorithm 2

(see Figure 5).

The final aspect of the system concerns com-

municating performance measurements to the

student. Here, we implement a per limb proce-

dure (we loosely refer to a skeletal segment con-

necting neighboring joints as a limb). Rather

than calculating the IDTW score as a whole, we

calculate separate IDTW scores for each joint

and then convert these into scores for each

limb. We map the IDTW score to a color table

and then convey our feedback on the perform-

ance using the virtual skeleton.

To prepare the visual evaluation, we repre-

sent IDTW scores for each joint by Dl
IDTW ; l ¼

1;…;K; where K is the total number of joints.

We calculate the performance at a particular

limb by

Z ¼ exp �t
ðDla

IDTW þDlb
IDTWÞ

2

� �
;

where la and lb denote the joints that form this

particular limb, and v is a parameter to control

the sensitivity of the performancemeasure. The

(a) (b)

Figure 4. VR dance training with feedback protocols. (a) Side-by-side feedback and (b) superimposed

feedback.
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value of Z is projected to a color map in blue,

aqua, green, yellow, or red. The color stays

closer to blue if the student is doing well and

shifts toward red as the performance worsens.

Experiments
Three subjects (one teacher and two students)

participated in our detailed experiments. Nine

other subjects participated in recording of con-

tinuous dance sequences for additional quanti-

tative evaluation.

System Configuration

The CAVE systemwe use consists of four stereo-

scopic channels, each with a projector and

screen. All channels are driven by a graphics

cluster of five nodes; one node serves as the

cluster master, while the other four each drive a

single channel. The student wears active stereo

glasses with optical markers that are tracked by

a six degrees-of-freedom tracking system.

When the student moves, the glasses’ position

and orientation are tracked by an array of cam-

eras distributed above the screens. The system

uses the tracking data to determine the content

to be displayed on each of the screens. The

Unity 3D game engine was used to implement

visual feedback, translated byMiddle VR for dis-

play in the CAVE.

The real-time analysis system extracted

features from student dancers. Each frame

recorded by the Kinect’s sensor contains infor-

mation about the location (in 3D) of 20 joints

in the figure it sees. The joint locations are cal-

culated relative to the hips (that is, normalized

to form a unit vector emanating from the hip).

Information concerning joint locations must

be scaled for the process to accommodate users

with different limb-to-limb ratios. We used

these normalized joint locations as information

to be fed into the subsequent steps in our proce-

dures to identify a particular gesture and gener-

ate feedback (using the IDTWalgorithm).

We considered three spherical configura-

tions for the SSOM used for training and repre-

senting posture space. Each of these maps—C1,

C2, and C3—has a different icosahedron

decomposition level (relating to the number of

map nodes distributed over the sphere). These

maps result in 42, 162, and 642 nodes (for C1,

C2, and C3, respectively).

Recognition and Evaluation

We started with the six basic positions of tradi-

tional ballet (bas bras and positons 1 through 5)

and constructed 30 gestures, which include the

reversal movements.14 For the SSOM training

process, the system recorded the teacher per-

forming each gesture 10 times, resulting in 300

instances of dance gestures. When training the

SSOM, five of 10 instances of each gesture class

were randomly selected to form gesture tem-

plates, and then all 300 were classified against

these benchmarks. Table 1 shows the recogni-

tion result for teacher data.

The results show that PT and PTSC (PT and

its sparse code) are more robust than other

methods discussed, regardless of the SSOM con-

figuration. We also observe that the higher

number of SSOM nodes, the higher the

Input: U – The user sequence up to current time (length N)
E – The expert (full) sequence (length M)

G – M × N cumulative cost matrix up to current time
V – Next frame in user sequence

Output: Updated IDTW distance

1. Function IDTW( U, E, G, V)

Q ← (N + 1)

UQ ← V

G(1 … M,Q) ← array (1 … M)

for i ← (max(1, Q), min( M, Q )) do

G(i,Q) ← min(G(i − 1,Q), (G(i − 1, Q − 1), ( G(i − 1, Q − 2)) + 
d(UQ , Ei)

end for
return min(G(1 … M,Q))/ Q

2. End function

Figure 5. Algorithm 2. The Incremental DTWalgorithm, where d(UQ, Ei) denotes the Euclidean distance

between joints in frames UQ and Ei.

O
cto

b
e
r–D

e
ce

m
b
e
r
2
0
1
5

87

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

http://www.computer.org/multimedia
http://www.qmags.com
http://www.qmags.com
http://www.computer.org/multimedia


performance of the recognition module. The

average recognition rate is close to 100 percent,

justifying our observation that incorporating

temporal information from gestures into our

recognition module improves the performance

of the PTand PTSC.

Our systemwas trained to identify the dance

gestures performed by the students using data

from performances by the teacher. Like the

teacher, the students performed each gesture 10

times, and each performance was recorded,

resulting in 600 samples for testing. Table 1

shows that the system’s recognition of previ-

ously unseen student gestures is high when our

PT and PTSC indexing protocols are imple-

mented. We also observe that the system has

different recognition rates for the two students,

in part because of how much they deviated

from the template.

We replaced the significant gesture recogni-

tion using different methods to report their

effects on the system. The first method we con-

sidered for comparison utilized the sparse code

of the SOMs.4 In the training phase, a SOM was

used to learn the postures that were the ele-

ments of all (teacher) gestures. Then, the sparse

code was used to represent a gesture pattern by

a set of a small number of nodes. In the testing

phase, we used the Hausdorff distance to meas-

ure the similarity between the sparse code of an

unknown input pattern and the sparse code of

training patterns.

The second method we considered for com-

parison was based on using the BoW feature,

k-means clustering, and a SVM. As in other

work,7,10 we employed a method for recognition

of dance gestures via BoW features and multi-

class SVM. In the training stage, after extracting

Table 1. Recognition accuracy results. The systemwas tested with different configurations for the spherical self-organizing

maps (SSOMs).

Framework

Clustering

method

Indexing

method Classifier

Average recognition accuracy (%)

Teacher

(300 instances,

30 classes)

Student 1

(300 instances,

30 classes)

Student 2

(300 instances,

30 classes)

Proposed SSOM (42 nodes) Posture

occurrence (PO)7
Template matching 85.0 75.1 69.7

Posture sparse

code (PSC)5
Template matching 57.3 49.9 51.7

Posture

transition (PT)

Template matching 95.3 91.6 83.4

Posture transition

sparse

code (PTSC)

Template matching 92.3 82.6 82.1

SSOM (162 nodes) PO Template matching 89.0 75.1 73.3

PSC Template matching 67.3 65.7 53.5

PT Template matching 98.3 93.4 88.8

PTSC Template matching 94.7 93.7 83.0

SSOM (642 nodes) PO Template matching 90.0 80.3 79.5

PSC Template matching 83.7 77.6 75.1

PT Template matching 99.0 93.7 92.4

PTSC Template matching 99.7 95.0 92.1

Sparse code

of SOMs4
SOM (625 nodes) PSC Template matching

(Hausdorff distance)

93.33 80.1 74.63

Bag of words

and support

vector

machine7,11

K-means

(625 nodes)

PO Multiclass SVM 99.33 29.33 13.0

Sparse code12 K-means

(625 nodes)

PSC Multiclass SVM 100.0 11.0 6.67
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skeleton points for every training frame

(obtained from the Kinect), we used a vector

quantization technique, k-means clustering, to

map skeleton points from every training frame

onto a unified dimensional histogram vector

(BoW). This histogram was treated as an input

vector for a multiclass SVM to build the training

classifier. In the testing stage, for every frame cap-

tured by the Kinect, the skeleton points were fed

into the cluster model to map them into a BoW

vector, which was finally fed into the multiclass

SVM classifier to recognize the dance gesture.

Lastly, in the third method,12 the training

and testing processes were the same as that of

the second method, except that we used the

sparse code instead of BoW.

The last three rows of Table 1 show the

results obtained by the three methods. All three

methods recognized, with more than 93 per-

cent accuracy, all 300 gesture instances of the

teacher’s performance. This is easy to justify, as

we used only teacher data for training. For the

recognition of dances performed by the two

students, the performance of the first method4

(using SOM and PSC) was similar to SSOM and

PSC. However, this performance was much

lower than that of the proposed method using

SSOM and PT. This result shows the superiority

of the proposed method for the recognition of

all dance gestures that included reversal ges-

tures. The multiclass SVM implemented in the

second and third methods7,11,12 performed

with 100 percent accuracy when recognizing

the teacher’s dances. The multiclass SVM-based

recognition methods on the other hand per-

formed poorly when attempting to recognize

student dances. In other situations,7,11,12 where

sufficient training sets were available, the SVM

method may perform effectively. In the current

application, we used only the teacher’s per-

formances to train the SVM classifiers; for every

gesture class, we used 10 instances of positive

samples and 290 instances of negative samples

to train the SVM. The inadequacy of this train-

ing set may be unfavorable for applying the

SVMmethod to dance training system.

We thus see that the proposed recognition

method is the most suitable approach for the

ballet training system because it attained an

accuracy of 95 and 92 percent when recogniz-

ing the student 1 and 2 dances, respectively.

Isolation of a Gesture from a

Continuous Sequence

To assess our system’s ability to recognize and

isolate gestures from a sequence, we asked nine

students to perform (continuously) a linked ser-

ies of dance gestures. We then applied the

criterion of maximum posterior probability

(Algorithm 2, Figure 5) to extract each succes-

sive gesture in order to estimate its duration.

We assessed the performance of the proposed

online gesture recognition method through

quantitative evaluation.

For this evaluation, we applied recall, preci-

sion, F1, and similarity metrics16 to continuous

gesture sequences of the nine students. F1 and

similarity are derived from recall and precision

and are considered a significant measurement

of accuracy. Table 2 shows the average accuracy

rates of the proposed online gesture recognition

method for all metrics applied to all the stu-

dents’ performance. With some minor noise at

the beginning and end of the gestures (and dan-

ces), the selection of gesture class appears to fol-

low the actual sequence (F1 producing 99.4

percent, and similarity 98.9 percent, averaged

over all test data). Clearly, the findings reflected

in Table 2 indicate that the proposed method

achieves superior gesture recognition results for

all gesture classes in all gesture sequences

assayed.

Table 2. Average similarity, F1, recall, and precision values of the proposed gesture recognition system,

obtained from continuous dance sequences (with the following order of gestures: G61; G12; G23; G34; G45;

andG56) for nine students.

Students Ground truth:

gesture (averaged

number of frames)

Recognition performance (averaged over all gesture

classes and students)

Similarity F1 Recall Precision

1–9 G61 (74), G12 (52),

G23 (52), G34 (53),

G45 (50), G56 (53)

0.9885 0.9938 0.9938 0.9947
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Visual Feedback Result

The implementations of concurrent feedback

using side-by-side and superimposed images are

illustrated in Figure 4. A detailed discussion of

these results is available elsewhere.14 Here, we

present only the experimental result, including

comments on the descriptive feedback the sys-

tem offers, based on the IDTWalgorithm.

The bottom row of images in Figure 6 shows

the feedback offered in real time during a prac-

tice/teaching session. The student executes a

dance sequence and receives visual feedback in

real time, allowing her to examine her perform-

ance, using information provided by the color

of the skeleton. In the figure, the performance

of the student is compared with the teacher’s,

over selected frames. For assessments that use

the IDTW algorithm, the system applies a joint

filtering process to identify active elements,

which are presented in colors other than white,

while presenting inactive joints in white.

As we can see, the proposed system can report

the mistakes made by the student in an easy-to-

interpret manner. When the student performs

well, the color of the visual feedback stays close

to blue. But when the student’s performance

deviates from the teacher’s, the system is able to

highlight where he/she is going wrong. For

example, in the last posture/cadence (see the

last frame in Figure 6), the performer is not posi-

tioning her arms correctly. So the color has

shifted toward green/yellow. Also, in the middle

frame in Figure 6, the red color marks the

incorrect placement of both hands. This visual

interpretation helps students by immediately

alerting them tomatters that need attention.

We measured the total IDTW score for each

gesture to compare the two student dancers

(the students performed the six dance gestures

reported in Table 1). The first student per-

formed reasonably well, while the second per-

formed did not do as well. After all the

performances were completed, the first stu-

dent had an average IDTW score of 0.202 6

0.0887, whereas the second student’s average

IDTW score was 0.586 6 0.2417. The high

IDTW score and standard deviation signify a

weaker performance by the second student.

We hope in future work to overcome

some of the limitations of our present

study. In our experiments, we tested the system

for the recognition of the six rudimentary posi-

tions of basic ballet and transitions between

them. We intend to move beyond the tradi-

tional content of the first two or three dance

classes, something that should be possible

because of elementary ballet’s restricted vocabu-

lary of movements. The syntax governing these

movements and their connection is developed

partly from natural limitations on combining

movement and partly on convention. When we

enlarge the set of postures beyond that rudimen-

tary set taught in the first classes in elementary

ballet, it becomes important to capture the

whole skeleton correctly. The first two versions

(a)

(b)

Figure 6. Descriptive feedback presented to a student while performing a dance sequence, based on a comparison with (a) the

teacher’s performance. (b) The student receives feedback in the form of colors of the skeleton.
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of the Kinect require dancers to face the camera;

furthermore, they do not capture correctly pos-

tures that involve bending backward. We also

observed that the Kinect sometimes detected the

leg joints inaccurately. These problems might be

solved by employing cameras that use time-of-

flight measurements, such as the Kinect 2 or

other sophisticated data-capturing devices. MM
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